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ABSTRACT. In this article, we introduce Bosbach states on L-graphs.
Firstly, the concept of Bosbach states on L-graphs is introduced. Then,
some propositions of Bosbach states on L-graphs are proved. After that,
some special Bosbach states on L-graphs are studied. In addition, some
examples of Bosbach states on special L-graphs are provided. Moreover,
we obtain that s is a Bosbach state on L-graph G’ can not be characterized
by s being a Bosbach state on L-graph G, where G’ is the complement of
L-graph G. On this basis, the concept of complement-preserving Bosbach
states is proposed. Moreover, we obtain that in linear residuated lattices,
G1 and G2 are isomorphic two L-graphs where h is a bijection from Gi
into G2 and s is a Bosbach state on L-graph (1, then s is also a Bosbach
state induced by h on L-graph G2; based on Example 3.21, if G1 and G2
are non-isomorphic two L-graphs and s is a Bosbach state on L-graph Gy,
s may be also a Bosbach state on L-graph G2. Finally, based on Example
3.23 and 3.24, we obtain that in residuated lattices, G1 and G2 are two
isomorphic L-graphs, then s is a Bosbach state on L-graph G2 can not be
characterized by s being a Bosbach state on L-graph G;.
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1. INTRODUCTION

Since Euler introduced graph theory in 1736 to solve the Konigsberg Bridge
Problem, this mathematical discipline has evolved into a powerful tool for address-
ing complex real-world challenges across diverse fields (See [I, 2]). Graph theory
has demonstrated remarkable versatility in modeling and solving practical prob-
lems in operations research, chemistry, computer science, and social sciences. Its
applications range from urban transportation planning to cartographic precision in
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map-making. The continuous advancement of graph theory has further revealed its
immense potential in tackling real-world problems. Each year brings new develop-
ments in the field (See [3, 4, 5, 6]), with many findings finding cross-disciplinary
applications and contributing to solutions for some of humanity’s most pressing
challenges.

A seminal breakthrough occurred in 1965 when Zadeh [7, 8, 9] pioneered fuzzy set
theory to address uncertainty and significant real-world phenomena. While Kauf-
man [10] first conceptualized fuzzy graphs as more realistic representations of natural
systems, it was Rosenfeld [11] who established the theoretical foundation for their
widespread applications across diverse domains including data mining, communica-
tions, clustering, scheduling theory, and planning. The emergence of fuzzy graph
theory has spurred extensive research, evidenced by numerous publications in this

field ([12, 13, 14, 15]). Its applications have expanded to critical areas such as
cryptography and decision-making problems ([16, 17, 18, 19]). Notably, in 2022,
Zahedi et al. [20] introduced the innovative concept of L-graphs (or RL graphs),

investigating their fundamental properties and demonstrating practical utility.

The notion of states is an analogue to probability measure, and plays a very im-
portant role in the theory of quantum structures. In 1995, Mundici [21] introduced
states on M V-algebras as averaging the truth value in Lukasiewicz logic. States con-
stitute measures on their associated M V-algebras, which generalize the usual prob-
ability measures on Boolean algebras. Then, the notion of state has been extended
to other logic algebras such as BL-algebras, residuated lattices, EQ-algebras,and
their non-commutative cases. Different approaches to the generalization mainly give
rise to two different notions, namely Riec¢an states and Bosbach states. In 2001,
Dvurecenskij [22] proved a state on MV -algebras always exists. In 2004, Georgescu
[23] defined Bosbach states and Rie¢can states on pseudo BL-algebras, and for a
good pseudo BL-algebra, he proved that any Bosbach state is also a Riecan state.
He asked to find an example of Rie¢an state on a good pseudo BL-algebra which is
not a Bosbach state. In 2017, Xin et al. [24] studied states on pseudo BCI-algebras.
In 2020, Xin et al. [25] studied the notions of fantastic filters and investigated the
existence of Bosbach states and Riecan states on FQ-algebras by using of fantastic
filters. In 2021, Hua [26] studied states on L-algebras and derivations of L-algebras.
In 2022, Shi et al. [27] investigated states on pseudo EQ-algebras and proved that
any Bosbach state is a Riec¢an state in normal pseudo EQ-algebras, but the inverse
is not true in general.

There is an arithmetic mean in addition and there is a geometric mean in multi-
plication on real number ring. Moreover, averaging the truth value in MV algebras
is represented by states. In [20], Zahedi et al. introduced the innovative concept
of L-graphs. L-graphs are defined based on residuated lattices. Unlike lattices,
residuated lattices have an operation “—”. In L-graphs, to study the mean of the
truth value of vertexes and edges, we need to use “—” in residuated lattices. In L-
graphs,the mean of the truth value of vertexes and edges is represented by Bosbach
states in our paper. The purpose of studying Bosbach states on L-graphs in this
article is to provide a tool for “fuzzy structural quantification analysis” on L-graphs.

In this article, we first attempt to introduce the notion of Bosbach states on L-
graphs. After that, we will prove some propositions of Bosbach states on L-graphs.
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Then, we will introduce some special Bosbach states and provide corresponding
examples. In addition, some examples of Bosbach states on special L-graphs will be
provided. Finally, we will discuss that (7) the relationship that between states on
L-graph G = («, 8) and Bosbach states on the complement of L-graph G’ = (¢, 5');
(i) the relationship between two L-graphs being isomorphic and Bosbach states on
corresponding L-graphs.

2. PRELIMINARIES

This section revisits fundamental definitions and properties of algebras pertinent
to this paper.

Definition 2.1 ([28]). A path is a simple graph whose vertices can be ordered such
that two vertices are adjacent iff they are consecutive in the list. In a path, if the
first vertex and the last vertex are connected, we call it cycle.

Definition 2.2 ([28]). A graph G is said to be connected, if each pair of vertices in
G belongs to a path.

Definition 2.3 ([28]). A complete graph G is a simple graph in which every pair of
distinct vertices is connected by a unique edge.

Definition 2.4 ([28]). A graph G = (V, E) is called bipartite graph, if V can be
divided into two classes so that the vertices of any edge belong to different classes
(vertices in the same class are not adjacent). In the bipartite graph, if any two
vertices in different classes are connected, then we call such a graph a complete
bipartite graph.

Definition 2.5 ([28]). A homomorphism from a simple graph G = (Vg, Eg) to
a simple graph H = (Vg, Eg) is a surjection f : Vo — Vg such that uv € Eg
iff f(u)f(v) € Eg. f is called an isomorphism, if f is a homomorphism that is
one-one.

Definition 2.6 ([29]). An algebra structure L = (L, A, V,®, —,0,1) of type (2,2,2,2,
0,1) is called a residuated lattice, if it satisfies the following conditions:

(R1) (L,A,V,,0,1) is a bounded lattice,

(R2) (L,®,1) is a commutative monoid (i.e. ® is commutative, associative and
x ®1 =z holds),

(R3) z®y < zifand only if z <y — z for all z,y,z € L, where < is the partial
order of the lattice (L, A, V,0,1).

In what follows, by L we denote the universe of a residuated lattice (L, A, V, ®,
—,0,1).

For any = € L and a natural number n, we define 2’ = 2 — 0, 2" = (2/), 2 =1
and 2" = z" ! @ x, for n > 1.

Proposition 2.7 ([30]). Let (L,A,V,®,—,0,1) be a residuated lattice. Then for
any x,y,z € L, the following properties hold:
Dloz=z,z—1=1,
(2) x <yifand only if x -y =1,
B)zor' =0,z20y=0 if and only if x <y,
Q) ife <y, theny—z<c—z,zozr<zoywmdrOz<yodz,
3
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)
) < <
= (y—=2)=(20y) 2 z=y— (z— 2),
)0/_1 1/_Ox<x// ///:x/’
JzO(y—2)<y—(z02) < (z0y) = (zO2),
0z yVz)=(xoy V(xoz),
11) 2V (y©z) > (xVy)©(xVz), hence zVy™ > (xVy)™ and 2™ Vy™ > (zVy)™"
for any natural numbers m,n,
(12) x = (z Ay) =z =y,
B)zoy=z0(r—=>x0y).

Definition 2.8 ([20]). G = («, ) is called an L-graphon G* = (V,E),ifa:V — L
and S : E — L are functions (L is a residuated lattice), with 5(giq;) < a(g:) ® a(g;)
for every ¢;q; € E. Besides, if G* is a path (cycle, bipartite, complete, complete
bipartite) graph, then G is called a path (cycle, bipartite, complete, complete bipar-
tite) L-graph on G*.

Example 2.9 ([20]). Suppose L = ([0,1],A,V,®,—,0,1), where

a+b—1 ifa+b>1
a®b= )
0 ifa+b<1
and
1 ) —a >
a— b= Zf b-az0
l—a+0b ifb—a<0.
Then G = (o, B) is a cycle L-graph on G*, as in Fig. 1, where V = {q1,¢2,43, 4},
E ={0192,993,9391, @104}, B(¢:q;) = (q:) © a(g;) for every giq; € E, a(q1) = 0.8,

a(g2) = 0.3, algs) = 0.1, a(qs) = 1, B(qigz) = 0.1, B(q2q3) = 0, B(g3qa) = 0.1,
Blqaqr) = 0.8.

(0.8)%1 = g%(0.3) (0.8) & q2(0,3)
0
0.8 0
0.3
(1) qu 01 (?D (0.1) (1) J D (0.1)

Figure 1. The L-graph G on  Figure 2. The complement of
G*. L-graph G'.

Definition 2.10 ([20]). The complement of L-graph G = (o, 8) on G* = (V, E) is
denoted by G’ = (¢/,8) on (G*) = (V, E’) that is the complement of G*, where
o =a, B(q:iq;) = alg;) © ( i), for every ¢;q; ¢ E.
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Example 2.11 ([20]). Consider the L-graph G in Example 2.11. It is observed
Gl = (0/76/) on (G*)/7 as in Flg 27 where V = {CIIJZQ»CJ&CM}; E = {CI1C]3aQQQ4}7
o'(q1) = 0.8, a’(q2) = 0.3, &/(g3) = 0.1, &/ (qa) = 1, B'(q1q3) = 0 and B'(q2q4) = 0.3.

Definition 2.12 ([20]). Let G1 = (a1, 61) and G3 = (az, 82) be two L-graphs on
Gi = (V1,Ey) and G5 = (Va, Es), respectively and ¢ € L\{1}. Then G; and G,
are isomorphic with threshold c, denoted by G1 = G, if there exists a bijection h:
Vi — V5 such that the following conditions hold: for all ¢1,¢q2 € Vi (I1) qiq; € En
if and only if h(g;)h(g;) € Ea,

(I2) a1(q;) > cif and only if aa(h(g;)) > ¢,

(13) 51 (qiqj) > ¢ if and only if Bg(h(ql)h(q])) > c.

Definition 2.13 ([31]). Let (L, A, V,®,—,0,1) be a residuated lattice. A Bosbach
state on L is a function s : L — [0,1] such that the following conditions hold:

(i) s(0) =0, s(1) =1,

(ii) s(x) + s(x = y) = s(y) + s(y — z) for all z,y € L.

Definition 2.14 ([31]). Let (L,A,V,®,—,0,1) be a residuated lattice. A Riecan
state on L is a function s : L — [0, 1] such that the following conditions hold:

(i) s(1) = 1,

(ii) s(z +y) = s(z) + s(y), whenever z_Ly.

3. BOSBACH STATES ON L-GRAPHS

In the sections, we introduce the concept of Bosbach states on L-graphs, study
some properties of Bosbach states on L-graphs provide some examples of Bosbach
states on L-graphs and discuss the relationships between Bosbach states on L-graphs
and L-graphs.

Definition 3.1. Let (L,A,V,®,—,0,1) be a residuated lattice, G = («, 3) be an
L-graph on G* = (V, E), ¢;&q; be the edge formed by the vertices ¢; and ¢;, “-” be
multiplication in the real number ring and s: L — [0, 1] be a function satisfying the
following condition: for all ¢;,q; € V,

(BS1) s(1) =1,

(BS2) s(a(qi)) + sleqi) = alg;)] = s(alq;)) + slala;) — alai)],

(BS3) s(Bla:&eay)) = s(a(as)) - s(alay)).
Then s is said to be a Bosbach state on L-graphs.

Definition 3.2. Let s be a Bosbach state on L-graphs. Then
the set
kery(s) = {a(@) € L | s(a(q:)) = 1}
is called the kernel on the vertexes V of a Bosbach state s on L-graphs and
The set

kerp(s) = {B(gi&eq;) € L | s(B(qideq;)) = 1}
is called the kernel on the edges E of a Bosbach state s on L-graphs.
Proposition 3.3. If kerg(s) # @, then kerg(s) C kery(s).

Proof. Based on Definition 3.2, since kerg(s) # @, we have s(8(¢;&q;)) = 1. By

Definition 3.1, we have s(a(g;)) - s(a(gj)) = 1. Then s(a(g;)) = s(a(g;)) = 1. Thus

kerg(s) C kery(s). O
)
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Proposition 3.4. Let s be a Bosbach state on L-graphs. If s(0') = s(0)’, then we
have s(0) = 0.

Proof. Based on Definition 2.6, Proposition 2.7 (8) and Definition 3.1, we have
1=15(1) =s(0") = s(0)) = s(0) — 0. Then s(0) < 0. Thus we have s(0) = 0. O

Remark 3.5. Generally, s(0) # 0. We can check in Example 3.9.

Definition 3.6. Let s be a Bosbach state on L-graphs. If s(0) = 0, then s is said
to be a regular Bosbach state on L-graphs.

Proposition 3.7. Let s be a Bosbach state on L-graphs. If a(g;) < al(g;), then
s(a(qi)) < s(alg)))-

Proof. Since a(g;) < a(g;). Then a(g;) — a(g;) = 1 by Proposition 2.7 (2). Thus
we have

s(a(gi) +1=s(a(q)) + sla(g:) = a(gy)] = s(algy)) + slalg;) — alg)]-
So s(a(gi)) — s(alg;)) = sla(g;) = a(g:)] —1 < 0. Hence s(a(g;)) < s(a(gy)). O

Definition 3.8. Let s be a Bosbach state on L-graphs. For any ¢;,q; € V and
1<i<j,

(1) if a(g;) < a(g;), we have s(a(g;)) < s(a(g;)), then s is called an increasing
Bosbach state on L-graphs,

(ii) if a(g;) < alg;), we have s(a(g;)) > s(a(g;)), then s is called a decreasing
Bosbach state on L-graphs,

(i) if a(q;) = a(g;), we have s(a(q;)) = s(a(g;)), then s is called an identity
Bosbach state on L-graphs.

Next, we will give some examples of Bosbach states on special L-graphs.

Example 3.9. Let L = ({0,a,b,¢,1},0,—,A,V),0 < a <b<c<1. We define ®
and — on L as follows:

®|0 a b ¢ 1 -0 a b ¢ 1
0/0 0O 0O 0 O 01 1 1 1 1
a0 0 0 a a al|/b 1 1 1 1
b0 0O b b b bla a 1 1 1
c|0 a b ¢ c c|0 a b 1 1
110 a b ¢ 1 1{0 a b ¢ 1

For every z,y € L, x Ay = min{z,y} and Vy = max{z,y}. Then L is a residuated
lattice. Consider the path L-graph G = (o, 8) on G* = (V, E), as in Fig. 3, where
V= {qth}, E= {(J1Q2}7 CY(Ql) =10, Oé(QQ) = a, 5((1192) =0.

Q1 0 Q@
O

(b) (a)
Figure 3. The path L-graph G on G*.

Define the function s : L — [0,1] by s(1) =1, s(0) = s(a) =0, s(b) = 1. Then s is a
Bosbach state on the path L-graph G = (¢, 8) and s is also a regular Bosbach state
on the path L-graph G = («, §).

6
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Example 3.10. Let L = ({0,a,b,¢,d,1},0,—=,A,V),0<a<b<c<d<1. We
define ® and — on L as follows:

®|0 a b ¢ d 1 — 10 a b ¢ d 1
00 0O OO O O 0/1 1 1 1 1 1
al0 0 0 0 0 a a|ld 1 1 1 1 1
b{0O 0 0 0 0 b blc ¢ 1 d 1 1
c|0 0 0 0 ¢ c c|/b b b 1 1 1
d|{0 0 0 b ¢ d dla a b ¢ 1 1
110 a b ¢ d 1 10 a b ¢ d 1

Then L is a residuated lattice. Consider the cycle L-graph G = («,3) on G* =
(V,E), as in Fig. 4, where V' = {q1,q2,¢3}, E = {0192, 0243, 1143}, a(q1) = b,
a(q2) = ¢, algs) = ¢, Blq1q2) = a, Blq2q3) = ¢, B(g3qa) = a.

Define the function s : L — [0,1] by s(1) = 1, s(0) = 0.64, s(a) = 0.4, s(b) = 0.5,
s(c) = s(d) = 0.8. Then s is a Bosbach state on the cycle L-graph G = (o, ) and s
is also an increasing Bosbach state on the cycle L-graph G = («, 3).

q q:
()3 2 > (d)
(b) q1
a a
a a
a a
(C)QZ 0 fI:s(C) (d)54 a (\]33(d)

Figure 4. The cycle L-graph G on  Figure 5. The complete L-
G*. graph G on G™.

Example 3.11. Consider the residuated lattice in Example 3.10 and the complete
L_graph G = (Oé7ﬂ) on G* = (V7E)a as in Flg 53 where V' = {Q17qQ,q3aQ4}7
E = {q192, 9293, 4394, 9441, 0143, 4244}, a(q1) = d, a(q2) = d, a(gs) = d, a(qa) = d,
Bla1q2) = a, B(a2q3) = a, B(a3q4) = a, Blaaqr) = a, B(a1g3) = a, B(q2q4) = a.

Define the function s : L — [0,1] by s(1) = 1, s(0) = 0, s(a) = 0.49, s(b) = 0.2,
s(c) = 0.6, s(d) = 0.7. Then s is a Bosbach state on the complete L-graph G = («, 5)
and s is also an identity Bosbach state on the complete L-graph G = («, ).

Example 3.12. Let L = ({0,a,b,¢,d,1},®,—,A, V), 0<a,b < ¢ < d <1, where a
and b are incomparable. We define ® and — on L as follows:

0 a C — 10 b

— oo o o®
oo T o o oloc
Qo o T oo
— o0 T v Ol
Q= = = = o
e e e e e R

SO O o oo
D » OO
O o0 o0 T w o
— 060 T O
S oo T -
O O D = |
oo o =T -
O oL, P~ R0
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Then L is a residuated lattice. Consider the bipartite L-graph G = (a, 8) on G*
(V,E), as in Fig. 6, where V' = {q1,42,43, 4,45}, E = {0143, @105, @2qa}, a(qn) = d
a(ge) =d, a(gz) =1, a(qs) = 1, algs) = 1, B(q1g3) = ¢, B(q1g5) = b, B(g2q4) = a.
Define the function s : L — [0,1] by s(0) = 0,s(1) = 1, s(a) = s(b) = s(c) = s(d)
0.6. Then s is a Bosbach state on the bipartite L-graph G = («, ).

1) .
q1 q3
a
o - (a) (c)
(d)
q4
a (1)
q2 0 0
(d) b
a5 a C
| )q2 5 q4( )
Figure 6. The bipartite L-  Figure 7. The complete bipartite L-
graph G on G*. graph G on G*.

Example 3.13. Consider the residuated lattice in Example 3.12 and the complete
bipartite L-graph G = (a, §) on G* = (V, E), as in Fig. 7, where V = {q1, ¢2, 43, @4},
E = {q143, 194, 0243, 294}, o(q1) = a, a(q2) = a, a(g3) = ¢, a(qa) = ¢, B(q1g3) = a,
B(q194) = 0, B(q2g3) = a, B(g2q4) = 0.

Define the function s : L — [0,1] by s(0) = s(a) = s(c) = s(1) = 1, s(b) = 0.2,
s(d) = 0.7. Then s is a Bosbach state on the complete bipartite L-graph G = (a, )
and s is also a decreasing Bosbach state on L-graphs G = (a, ).

In the following section, we will discuss the relationship between Bosbach states
on L-graphs and Bosbach states on the complement of L-graphs.

, q a2
(0.4)?\l 03 g>2(o.e) (0.4) (0.6)
0.2 0.5
0.6 0.4
. (0.7) (0.5)
(0.7 %4 0z 005) . 0

Figure 8. The L-graph G on Figure 9. The complement of
G*. L-graph G’ on (G*)".
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Example 3.14. Let L = ([0,1], A, V,®,—,0,1) be a residuated lattice, where
1 ifa<bd

a®b=aANband a— b= ]
b otherwise.

Consider the cycle L-graph G = (o, 8) on G* = (V, E), as in Fig. 8, where V =
{Q17Qqu3aQ4}> E = {Q1CI27Q2QB»QBQ4aQ1Q4}v a((h) = 047 OZ(QQ) = 06) 0[((]3) = 057
a(qs) = 0.7, B(q1q2) = 0.3, B(g2q3) = 0.5, B(g3q4) = 0.4, B(qaq1) = 0.2.
Now, we define the function s: L — [0, 1] as follows:

0 if0<zx<0.1

s(z) = :

1 if0.l<z<1.
One can easily check that s is a Bosbach state on L-graph G = («, ).
Consider the cycle L-graph G = (o, 8) on G* = (V, E). It is observed G’ = (o/, 3')
on (G*)/ = (V‘v El)v as in Flg 9, where V' = {qlanquaq4}7 E' = {Q1Q37CJ2Q4},

o (q1) =04, o/(g2) = 0.6, &’(¢g3) = 0.5, &’(q4) = 0.7, B'(q1¢3) = 0.4, 5 (g294) = 0.6.
Consider s on L-graph G. It is clear that s is a Bosbach state on L-graph G’ =

(o, ).
Example 3.15. Let L = ([0,1], A, V,®,—,0,1) be a residuated lattice, where

a+b—-1 ifa+b>1
a®b=
0 ifa+b<1

and

l—a+b ifb—a<O.

Consider the L-graph G = («,8) on G* = (V,E), as in Fig. 10, where V =
{ar, 02,03}, B = {0192, 193}, a(q1) = 0.5, a(gz2) = 0.6, a(gz) = 0.5, B(q192) = 0.4,

Bla1g3) = 0.3.
Now, we define the function s: L — [0, 1] as follows:

025 if0<xz<04
s(x)=¢ 05 if04<z<06
1 if0.6 <z <1,
One can easily check that s is a Bosbach state on L-graph G = («, ).

{ 1 ifb—a>0
a— b=

q q
(0.5) 050
04 03
06) 05 (08) 05 05)
Q@ a3 'P] a3
Figure 10. The L-graph G on G*. Figure 11. The complement of L-graph
G’ on (G*)'.

9
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Consider the L-graph G = (o, 8) on G* = (V,E). It is observed G' = (¢/, ')
on (G*) = (V,E’), as in Fig. 11, where V = {q1,¢2,¢3}, E' = {q2q3}, &/(q1) =
0.5, &/ (g2) = 0.6, a/(q3) = 0.5, B'(q2¢q3) = 0.5. Consider s on L-graph G. Since
s(B'(q2&q3)) = s(0.5) = 0.5, s(c’(g2)) = s(0.6) = 0.5, s(c’(¢3)) = s(0.5) = 0.5,
s(a/(g2)) - s(a’(g3)) = 0.5 x 0.5 = 0.25 # 0.5. Hence, s is not a Bosbach state on
L-graph G' = (o/, 8').

Remark 3.16. The above two examples express that s is a Bosbach state on L-
graph G’ = (o/, ') can not be characterized by s being a Bosbach state on L-graph

G =(af).

Definition 3.17. If s is a Bosbach state on L-graphs and s is also a Bosbach state
on the complement of L-graphs, then we called s is a complement-preserving Bosbach
state.

It is clear that s is a complement-preserving Bosbach state in Example 3.14.

Proposition 3.18. Let L-graph G” = (o', ") be the complement of L-graph G' =
(o, f") and G' = (/, ') be the complement of L-graph G = (o, B). If s is a
complement-preserving Bosbach state and (q;&q;) = a(q;) © a(g;), then s is also a
Bosbach state on G" = (', 8").

Proof. Based on Definition 2.8 and Definition 2.10, in L-graph G” = (&, 8”) and L-
graph G = (o, ), we have a(g;) = o'(q;) and 8" (¢;&q;) = o' (g;) © ' (q;) for every
¢i»q; € V. Since f(gi&q;) = a(q;) © a(g;), we have 8" (q;&q;) = f(g:&q;). Since s a
complement-preserving Bosbach state. Then s is a Bosbach state on G” = (o', ")
by Definition 3.1. O

In this section, we will discuss the relationship between two L-graphs being iso-
morphic and Bosbach states on corresponding L-graphs.

Theorem 3.19. Let (L,A,V,®,—,0,1) be a linear residuated lattice, G; = (a1, 1)
and G2 = (ag,B2) be two L-graphs and s be a Bosbach state on L-graph G =
(a1,61). If G1 and Go are isomorphic two L-graphs where h is a bijection from Gy
into Ga, then s is also a Bosbach state induced by h on L-graph Gs = (ag, 52).

Proof. Based on Definition 2.12 and Definition 3.1, it is clear that s(1) = 1, s(aa(¢}))+
slaa(q;) = a2(qj)] = s(a2(q))) + slaa(qy)) = aa(q)] and s(B2(gideq;)) = s(aa(qi)) -
s(az2(gj)). Then s is a Bosbach state on L-graph G2 = (a2, B2). O

Example 3.20. Let L = ([0, 1], A,V,®,—,0,1) be a residuated lattice, where
1 ifa<d

a®b=aAband a = b= .
b  otherwise.

Consider two L-graphs G7 = (a1, /1) and G2 = (ag,f2) on G5 = (V1, E1) and

G35 = (Va, Ey), respectively, as in Fig. 12, where Vi = {q1,¢2,¢3,q4}, E1 =

{0162, 4243, 4304, 401, @143}, 1(q1) = 0.3, a1(q2) = 0.5, a1(g3) = 0.6, a1(qs) = 0.8,

Bi(q1q2) = 0.2, Bi(q2q3) = 0.4, Bi(g3qa) = 0.6, B1(qaq1) = 0.3, Bi(qgz) = 0.1,

Vo = {d1, 45, 45, 44}, B2 = {4105, 4505, 4394, 4445, 145} @2(dh) = 0.3, az(gs) = 0.5,
10
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Figure 12. Two L-graphs G; and G .

az(q3) = 0.6, aa(qy) = 0.8, Ba(q1gy) = 0.2, Balgaq3) = 04, Ba(qzqy) = 0.6,
B2(q4q}) = 0.3, Ba2(qigs) = 0.1. Additionally, let h be a bijection from G; into
G2, where h(g;) = ¢;. Therefore, G; and G5 are isomorphic L-graphs.

Now, we define the function s: L — [0, 1] as follows:

0.3 if0<x<0.3
s(z) = .
1 if0.3<z < 1.

One can easily check that s is a Bosbach state on L-graph Gy = (aq, 51). It is clear
that s is also a Bosbach state on L-graph Gs = (g, 82).

Example 3.21. Let L = ([0,1],A,V,®,—,0,1) be a residuated lattice, where

1 ifa<bd

a®b=aAband a — b= ]
b  otherwise.

Consider two L-graphs G; = (a1,61) and Go = (a9, f2) on G7 = (V4,E;) and
G35 = (Va, Ey), respectively, as in Fig. 13, where Vi = {q1,¢2,¢3,q4}, E1 =
{0192, 243, 4304, a1, 1g3}, 1 (q1) = 0.8, a1(g2) = 0.4, a1(g3) = 0.9, a1(qs) = 0.6,
Bi(qiq2) = 0.4, Pi(g2q3) = 0.3, fi(g3qa) = 0.5, B1(qaq1) = 0.6, Bi(qrg3) = 0.7,
Va = {q1, 45, a3. 04}, B2 = {4145, 4545, 4344, 9491, 193} 2(qt) = 0.7, aa(gs) = 0.4,
asdh) = 08, as(dh) = 0.6, Baldiah) = 03, faldsds) = 04, faldsds) — 0.6
B2(q4qt) = 0.5, B2(qiqs) = 0.7. Additionally, let h be a bijection from G into
Ga, where h(g;) = ¢}. Then G; and G are non-isomorphic L-graphs.

Now, we define the function s: L — [0,1] as follows:

04 if0<x<04
s(x) = .
1 if04<z<l.

One can easily check that s is a Bosbach state on L-graph G; = (a1, 81). It is clear
that s is also a Bosbach state on L-graph Go = (g, 82).

Remark 3.22. Let (L, A, V,®,—,0,1) be a linear residuated lattice, G; and G2 are
two non-isomorphic L-graphs. The above example expresses that if s is a Bosbach
state on L-graph G7 = (a1, 31), s may be also a Bosbach state on L-graph Gy =

(a27ﬁ2)~
11
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Figure 13. Two L-graphs G; and G .

Example 3.23. Let L = ({0,a,b,¢,d,e,1},0,—,A,V), 0 <a <bc<d<e<]l,
where b and ¢ are incomparable. We define ® and — on L as follows:

0 a b ¢ d — 10 c d e

— o o0 T o
OO OO oo
» o ® O

T v O
o o0 0 o O

Qo 0o

O D000 O
O A0 T O
o A0 T v O
[l e e i e R e R
T T T & e

T T T T == =T

(eI = Mo e PN T

oM e T N e

I e e

e e ) R

0 a 1 110 a
Then L is a residuated lattice. Consider two L-graphs G7 = (a1,51) and Gy =
(g, B2) on G = (V1, Ey) and G5 = (Va, Es), respectively, as in Fig. 14, where
Vi = {q, ¢}, B1 = {q1q2}, a1(q1) = b, ai(qe) = e, fi(qiq2) = a, Vo = {q1, 5},
Es ={q1dh}, aa(q)) = ¢, aa(gh) = e, P2(q1dh) = a. Additionally, let h be a bijection
from G; into Gg, where h(g;) = ¢;. Then G; and G2 are isomorphic L-graphs.

C

a a @ g a %
(b) (e) (o) (e)
Figure 14. Two L-graphs G; and G .

Define the function s : L — [0,1] by s(0) = 0, s(a) = s(b) = s(¢) = s(d) = 0.6,
s(1) = 1. One can easily check that s is a Bosbach state on L-graph G = (a1, 81).
It is clear that s is also a Bosbach state on L-graph Ga = (a2, 82).

Example 3.24. Consider the residuated lattice in Example 3.23. Consider two
L-graphs G; = (a1,01) and Gy = (ag,f2) on Gf = (V4,E;) and G5 = (Va, Es),
respectively, as in Flg 15, where V1 = {ql, QQ,Q3}, E1 = {ql(IQ, q243, Q1Q3}, al(ql) =
e, 1(q2) = d, a1(g3) = d, B1(q1q2) = b, P1(q2q3) = a, f1(q1q3) = b, Va = {4}, 45, 43},
By = {4165, 425, (143} 02(q1) = €, a2(q3) = d, az(q3) = d, B2(q142) = ¢, P2(daq5) =
a, B2(¢1qs) = c. Additionally, let h be a bijection from G into Ga, where h(g;) = ¢..
Then G and G4 are isomorphic L-graphs.

12
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(d) a (d) (d) a (d)
Figure 15. Two L-graphs G and G .

Define the function s : L — [0,1] by s(0) = 0.2, s(a) = 0.25, s(b) = s(d) = 0.5,
s(c) = 04, s(1) = 1. One can easily check that s is a Bosbach state on L-graph
Gy = (a1, B1). Since s(Balgileat)) = s(c) = 04, s(aa(g})) = s(e) = 1, s(as(gh)) =
s(d) = 0.5, s(az(q})) - s(a2(gh)) =1 x 0.5 =0.5 # 0.4. Thus s is not a a Bosbach
state on L-graph G = (a2, f2).

Remark 3.25. Let (L,A,V,®,—,0,1) be a residuated lattice, G; = (a1, 1) and
G2 = (aw, f2) be two isomorphic L-graphs. The above two examples express that s
is a Bosbach state on L-graph G = (a2, 82) can not be characterized by s being a
Bosbach state on on L-graph G; = (aq, 81).

4. CONCLUSION

In this paper, we first introduced the notion of Bosbach states on L-graphs. Then,
some propositions of Bosbach states on L-graphs were proved. After that, some spe-
cial Bosbach states on L-graphs were proposed. Additionally, we introduced some
examples of Bosbach states on special L-graphs. Moreover, we obtained that s is
a Bosbach state on L-graph G’ = (¢/, ') can not be characterized by s being a
Bosbach state on L-graph G = (a, 3) and the concept of complement-preserving
Bosbach states on L-graphs was introduced. Finally, we obtained that the relation-
ship between two L-graphs being isomorphic and Bosbach states on corresponding
L-graphs.

In the future, we will study Bosbach states on more complex L-graphs and at-
tempt to obtain some other properties of Bosbach states on L-graphs.
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